Astrophotography Formula

David N. Ault Jr.

June 6, 2014

1 Signal To Noise Ratio

Howell, Koehn, Bowell, Hoffan Equation:
$I=$ Photon Flux (photons/seconds)
$\eta=$ Quantum Efficiency ($e^{-} /$photons)
$\tau=$ Exposure Time (seconds)
$F=$ Number of Frames (no units)
$n_{s}=$ Number of pixels in source aperture (no units)
$n_{B}=$ Number of pixels in background aperture (no units)
$N_{d}=$ Dark Current ($e^{-} /$seconds)
$N_{r}=$ Read Noise (e^{-})
$G=$ Gain (e^{-} / ADU)
$B_{s k y}=$ Sky Background (ADU/second)
$S / N=$ Signal to Noise Ratio (no units)

$$
\begin{equation*}
S / N=\frac{I \eta \tau \sqrt{F}}{\sqrt{I \eta \tau+n_{s}\left(1+\frac{n_{s}}{n_{B}}\right)\left[B_{s k y} G \tau+N_{d} \tau+N_{r}^{2}+(0.289 G)^{2}\right]}} \tag{1}
\end{equation*}
$$

Howell, Koehn, Bowell, Hoffan modified for single pixel:
$I=$ Photon Flux (photons/seconds)
$\eta=$ Quantum Efficiency ($e^{-} /$photons)
$\tau=$ Exposure Time (seconds)
$F=$ Number of Frames (no units)
$N_{d}=$ Dark Current ($e^{-} /$seconds)
$N_{r}=\operatorname{Read}$ Noise (e^{-})
$G=$ Gain (e^{-} / ADU)
$B_{s k y}=$ Sky Background (ADU/second)
$S / N=$ Signal to Noise Ratio (no units)

$$
\begin{equation*}
S / N=\frac{I \eta \tau \sqrt{F}}{\sqrt{I \eta \tau+B_{s k y} G \tau+N_{d} \tau+N_{r}^{2}+(0.289 G)^{2}}} \tag{2}
\end{equation*}
$$

Howell, Koehn, Bowell, Hoffan Equation (modified for subject S/N):
$I=$ Photon Flux (photons/seconds)
$\eta=$ Quantum Efficiency ($e^{-} /$photons)
$\tau=$ Exposure Time (seconds)
$F=$ Number of Frames (no units)
$n_{s}=$ Number of pixels in source aperture (no units)
$n_{B}=$ Number of pixels in background aperture (no units)
$N_{d}=$ Dark Current ($e^{-} /$seconds)
$N_{r}=\operatorname{Read}$ Noise (e^{-})
$G=$ Gain (e^{-} / ADU)
$B_{s k y}=$ Sky Background (ADU/second)
$S / N=$ Signal to Noise Ratio (no units)

$$
\begin{equation*}
S / N=\frac{\left(I \eta \tau-B_{s k y} G \tau\right) \sqrt{F}}{\sqrt{I \eta \tau+n_{s}\left(1+\frac{n_{s}}{n_{B}}\right)\left[B_{s k y} G \tau+N_{d} \tau+N_{r}^{2}+(0.289 G)^{2}\right]}} \tag{3}
\end{equation*}
$$

2 Ideal Exposure

```
P= Bits per pixel (no-units)
W = Full Well Depth ( }\mp@subsup{e}{}{-})
N
\tau= Test Exposure Time (seconds)
B= Measured Background Value (ADU)
b = Measured Bias Pedestal (ADU)
C= Contribution From Readout Noise {0.0:1.0} (no-units)
G= Gain ( }\mp@subsup{e}{}{-}/ADU
\tau= Ideal Exposure Time (seconds)
```

If gain for your camera is unknown it can be estimated by: $G=\frac{W}{2^{P}}$

$$
\begin{equation*}
\tau=\frac{N_{r}^{2}}{\left[(C+1)^{2}-1\right](B-b) G} \tag{4}
\end{equation*}
$$

3 Image Scale \& Field of View

$I_{\text {scale }}=$ Image Scale (arc-seconds / pixel) - The amount of sky one pixel covers
$P_{\text {size }}=$ Pixel Size ($\mu \mathrm{m}$)
$F=$ Focal Length (mm)
$B=$ Binning (no-units) - The binning mode 1 for $1 \mathrm{x} 1,2$ for 2 x 2 , etc.
$C_{x}=$ Pixel count in X direction (no-units)
$C_{y}=$ Pixel count in Y direction (no-units)
$V_{x}=\mathrm{X}$ Field of View (arc-minutes) - The amount of sky the sensor covers in the x direction
$V_{y}=$ Y Field of View (arc-minutes) - The amount of sky the sensor covers in the y direction

$$
\begin{aligned}
I_{\text {scale }} & =\frac{648 P_{\text {size }}}{\pi F B} \\
V_{x} & =\frac{C_{x} I_{\text {scale }}}{60} \\
V_{y} & =\frac{C_{y} I_{\text {scale }}}{60}
\end{aligned}
$$

4 Resolution

$\lambda=$ Wavelength of Light (nm)
$D=$ Diameter of Primary Mirror or Objective (mm)
$\Theta_{r}=$ Diffraction Limited Angular Resolution (radians)
$\Theta_{s}=$ Diffraction Limited Angular Resolution (arc-seconds)

$$
\begin{align*}
\Theta_{r} & =\frac{1.22 \lambda}{1000000 D} \tag{5}\\
\Theta_{s} & =\frac{0.79056 \lambda}{\pi D} \tag{6}
\end{align*}
$$

5 Polar Alignment

$D=$ Star Drift (pixels)
$I_{\text {scale }}=$ Image Scale (arc-seconds / pixel) - The amount of sky one pixel covers
$\tau=$ exposure time (seconds)
$R_{d r i f t}=$ Drift Rate (arc-seconds / second)
$A_{d e c}=$ Declination Angle (radians)
$E=$ Drift Error (arc-seconds)

$$
\begin{align*}
& R_{\text {drift }}=\frac{D I_{\text {scale }}}{\tau} \tag{7}\\
& E=\frac{300 R_{\text {drift }}}{\pi \cos \left(A_{d e c}\right)} \tag{8}
\end{align*}
$$

6 Focal Reducer Effects

$F_{r}=$ Focal Length of Reducer (mm)
$D=$ Distance From Reducer to CCD (mm)
$C=$ Compression Factor (no-units)
$I_{s}=$ Image Circle of Scope or Reducer, which ever is smaller (mm)

- Sometimes Called Clear Aperture
$I_{c}=$ Image Circle at CCD (mm)
$F_{s}=$ Focal Length of Scope (mm)
$F_{e}=$ Effective Focal Length (mm)

$$
\begin{gather*}
C=\frac{F_{r}-D}{F_{r}} \tag{9}\\
I_{c}=I_{s} C \tag{10}\\
F_{e}=F_{s} C \tag{11}
\end{gather*}
$$

7 Critical Focus

$\lambda=$ Wavelength of Light (nm)
$R=$ Focal Ratio (no-units)
$A_{d}=$ Airy Disk (mm)
$C=$ Critical Focus Range (mm)

$$
\begin{align*}
& A_{d}=0.00243932 \lambda R \tag{12}\\
& C=0.00487864 \lambda R^{2} \tag{13}
\end{align*}
$$

